skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tedford-Callahan, Kinsey N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context Reversing global declines of foundation species requires recovery of critical bottlenecks in population dynamics, particularly the recruitment of early life stages. Understanding the controls on recruitment can substantially improve restoration success. Objectives We investigated how geophysical conditions and restoration history determine recruitment in eastern oysters (Crassostrea virginica), a foundation species requiring substantial restoration efforts following severe, widespread losses. Methods Over 3 years, we measured annual oyster recruitment to standardized ceramic tiles on 9–16 intertidal reefs in coastal Virginia, USA. We paired these measurements with an 18-year time series of recruitment to natural substrate on 8 natural reference reefs and 44 restored reefs (0–16 years post-construction). Results Recruitment to tiles was highly correlated with recruitment to natural substrate, validating our methodology. Recruitment was positively spatially autocorrelated within 1 km and increased 9–14 × with moderate wind fetch. A one-meter increase in substrate elevation tripled recruitment. Recruitment was 4 × higher on natural reefs compared to restored reefs, regardless of elapsed time since restoration. Geospatial model predictions identified 6% (24 km2) of intertidal areas as highly suitable for oyster recruitment, offering a refined target for restoration practitioners. Conclusions By integrating multi-year field studies, long-term monitoring, and habitat suitability modeling, our research identified environmental conditions favorable for oyster recruitment, offering insights that could enhance restoration planning and population resilience. Our findings provide actionable insights for optimizing oyster restoration by targeting areas with favorable wind fetch and elevation. These results offer valuable guidance for spatial planning in restoration and may inform strategies for other species where recruitment limits restoration success. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. This dataset contains measurements of Eastern oyster (Crassostrea virginica) recruitment to standardized ceramic tiles deployed across intertidal oyster reef sites in the Virginia Coast Reserve. Recruitment is defined as the number of macroscopic oyster recruits (less than or equal to 25 mm shell height) per square centimeter of tile surface, capturing settlement and early post-settlement survival. Data were collected in 2018, 2019, and 2021 across 9-16 reef sites per year, including both natural and restored reefs. The dataset supports research on spatial and environmental drivers of oyster recruitment and has been validated against natural reef substrate data for comparability. 
    more » « less